Ch. 8 NOTES ~ PERIODIC PROPERTIES OF THE ELEMENTS

NOTE: Vocabulary terms are in **boldfaced**. Supporting details are in *italics*.

8.1 Notes: Patterns of Behavior

- I. Periodic Trends in Atomic Size
 - A. atomic radius—half the distance between two nuclei in a diatomic molecule
 - 1) diatomic = consisting of two identical atoms
 - 2) seven diatomic molecules ("Super Seven"): H2, N2, O2, F2, C12, Br2, I2
 - B. group trends
 - 1) atomic size increases from top to bottom
 - 2) reason: adding $n \# s = adding \ electrons = adding \ shells$
 - C. periodic trends
 - 1) atomic size decreases from left to right
 - 2) reason: adding electrons to the same shell pulls the electron clouds in more, as more protons are added to attract more electrons)
 - 3) "shielding effect" of inner electrons

- II. Periodic Trends in *Ionic Size*
 - A. cations (positive ions)
 - 1) cations are smaller than their neutral atoms
 - 2) reason: electrons have been removed)
 - B. anions (negative ions)
 - 1) anions are larger than their neutral atoms
 - 2) electrons have been added
 - C. group trends
 - 1) ionic radius increases from top to bottom
 - 2) reason: reason: adding $n \# s = adding \ electrons = adding \ shells$
 - D. periodic trends
 - 1) ionic radius decreases from left to right
 - 2) reason: adding electrons to the same shell pulls the electron clouds in more, as more protons are added to attract more electrons
 - 3) "shielding effect" of inner electrons

- III. Periodic Trends in Ionization Energy
 - A. <u>ionization energy</u>—the *energy needed to remove an electron* from an atom, in kJ/mol
 - B. first ionization energy—the energy needed to remove the first electron
 - C. group trends
 - 1) (first) ionization energy decreases from top to bottom
 - 2) reason: outermost electron is farther and farther from the nucleus in larger atoms, so it is more easily removed
 - D. periodic trends
 - 1) (first) ionization energy increases from left to right
 - 2) reason: "nuclear charge" increases; more attraction between electrons and protons

1

- IV. Periodic Trends in Electronegativity
 - A. <u>electronegativity</u>—the "greediness" of an atom for electrons when chemically reacting
 - B. noble gases do not have electronegativity values
 - C. electronegativity trends not completely regular
 - 1) fluorine = most electronegative element with a value of 4.0 (smallest anion formed)
 - 2) cesium = least electronegative element (largest cation formed)
 - D. group trends: electronegativity decreases from top to bottom
 - E. periodic trends: electronegativity increases from left to right
 - F. chemical bond character is determined by electronegativity differences between the bonding partners

- V. Periodic Trends in Electron Affinity
 - A. electron affinity (EA)—energy required to add an electron to a gaseous atom
 - B. EA hard to determine; trends less clear
- C. ...but usually increases from left to right and decreases from top to bottom

- VI. Periodicity and General Characteristics of the Representative Elements
 - A. partially filled "shells"
 - B. patterns

GROUP NUMBER	# VALENCE ELECTRONS	# ELECTRON DOTS	STATUS
Group IA	1	1 (h	as 1 out of 8, missing 7 to be full)
Group IIA	2	2 (h	as 2 out of 8, missing 6 to be full)
Group IIIA	3	3 (h	as 3 out of 8, missing 5 to be full)
Group IVA	4	4 (h	as 4 out of 8, exactly half-full)
Group VA	5	5 (h	as 5 out of 8, needs 3 more to be full)
Group VIA	6	6 (h	as 6 out of 8, needs 2 more to be full)
Group VIIA	7	7 (h	as 7 out of 8, needs 1 more to be full)
Group VIIIA	8	8 (h	as 8 out of 8, completely full)

1) <u>alkali metals</u>—Group IA; Group 1

Group IA has 1 valence electron (1/8, missing seven to be full)

- a) Li, Na, K, Rb, Cs, Fr
- b) good conductors
- c) soft, silver-white
- d) not found in elemental form naturally
- e) react violently with water to form bases (alkali)
- f) uses of sodium: Na in NaCl;, NaOH used in paper-making and soap-making; NaOH in "lye" in oven and drain cleaners; Na⁺ ion is important to our bodies
- g) uses of potassium: K in KOH (hydroxide cleaners); in fertilizer; K^+ ion is important to our bodies

2) alkaline earth metals—Group IIA; Group 2

Group IIA has 2 valence electrons (2/8, missing six to be full)

- a) Be, Mg, Ca, Sr, Ba, Ra
- b) obtained from mining mineral ores
- c) not found in elemental form naturally

- d) some react with water, but less violently than the alkali metals
- e) uses of magnesium and beryllium: alloys
- f) uses of beryllium: nuclear weapons
- g) uses of calcium ion and magnesium ion: important to our bodies
- h) uses of strontium: pyrotechnics

3) Group IIIA; Group 13 (aluminum group)

Group IIIA has 3 valence electrons (3/8, missing five to be full)

- a) B, Al, Ga, In, Tl
- b) Al is the most useful member of the group; does not react with water
- c) uses of aluminum: alloys— Al_2O_3 as a gritty powder; water purification; fabric dyeing; aluminum cans, siding, and foil; paper manufacture; in deodorants; $Al(OH)_3$ in antacids
- d) uses of boron: in $Na_2B_4O_7 * 10H_2O$ borax (water softener and cleaner) and H_3BO_3 boric acid (contact lens cleaner and roach insecticide)
- e) uses of gallium: GaAs (gallium arsenide) used in some semiconductors

4) Group IVA; Group 14 (carbon group)

Group IVA has 4 valence electrons (4/8, exactly half-full)

- a) C, Si, Ge, Sn, Pb
- b) uses of carbon: graphite, diamond, organic compounds
- c) uses of silicon: (in many minerals); SiO_2 in sand; semiconductors; microchips; glass photocells
- d) uses of germanium: photocells
- e) uses of tin and lead: alloys (solder Pb + Sn; bronze = Cu + Sn); leaded gasoline
- f) uses of tin: foil, metal can coating

5) Group VA; Group 15 (nitrogen group)

Group VA has 5 valence electrons (5/8, needs three more to be full)

- a) *N, P, As, Sb, Bi*
- b) uses of nitrogen: needed by plants; nucleic acids (DNA and RNA); liquid N₂ for low temps; TNT; ammonia (NH₃)
- c) uses of phosphorus: phosphate (PO₄)³⁻;ATP; nucleic acids; fertilizer; red P used in matches
- d) uses of arsenic: GaAs (gallium arsenide) used in some semiconductors
- e) uses of antimony: alloys with Pb and other metals

6) <u>chalcogens—Group VIA; Group 16 (oxygen group)</u>

Group VIA has 6 valence electrons (6/8, needs two more to be full)

- a) **O, S, Se, Te, Po**
- b) uses of oxygen: atmospheric gas O_2 ; in water (H_2O) ; product of photosynthesis; ozone O_3 ; hydrogen peroxide (H_2O_2) ; in bleach sodium hypochlorite (NaClO); in sulfuric acid (H_2SO_4)
- c) sulfur: S_8 , SO_2 , SO_3 ; H_2SO_3 , H_2SO_4 ...
- d) uses of selenium: photoelectric cells; photocopying

7) <u>halogens</u>—Group VIIA; Group 17

Group VIIA has 7 valence electrons (7/8, needs one more to be full)

- a) F, Cl, Br, I, At
- b) *F* is the most reactive

- c) found as diatomic molecules, not elemental: F_2 , Cl_2 , Br_2 , I_2
- d) commonly found as ions in a salt
- e) hydrogen has characteristics of Group IA and VIIA; often listed in both places
- f) uses of fluorine: NaF or SnF₂ "fluoride"
- g) uses of chlorine—CaCl₂ (Damp Rid), NaCl, Cl⁻ (chloride) ion in the body; water purification
- h) uses of iodine: Γ (iodide) ion in the body; ion put into table salt; antibacterial cleaner
- i) uses of bromine: silver bromide (AgBr) film coating

8) Noble Gases—Group VIIIA / 0; Group 18

Group VIIIA has 8 valence electrons, completely full)

- a) He, Ne, Ar, Kr, Xe, Rn
- b) inert; inactive; valence is full
- c) they do not form compounds unless chemically "forced" (example: XeO₃)
- d) uses: Ne/Kr/Xe signs, He balloons, welding atmosphere Ar and He, Ar in light bulbs

8.2 Notes: Transition Elements

VII. Properties of the Transition Elements

A. transition elements – "B" groups; 3-12

- 1) general characteristics
 - a) metals
 - b) form multiple charges for ions
 - c) the majority occurs naturally
 - d) all solids at room temperature—except for mercury (Hg) which is a liquid (uses of mercury: thermometers and barometers)

2) Iron Triad

- a) Fe, Co, Ni: iron, cobalt, nickel
- b) magnetic
- c) uses of iron: main component of steel (building material); Fe²⁺ ion in hemoglobin and myoglobin
- d) uses of cobalt: alloyed with iron and nickel, used in jet turbines; steels; electroplating; Co salts used for blue paint color pigments
- e) uses of nickel: stainless steel

3) Platinum "Group"

- a) Ru, Rh, Pd, Os, Ir, Pt
- b) ruthenium, rhodium, palladium, osmium, iridium, platinum
- c) uses of platinum: jewelry; wire; electric contacts; dentistry; missile cones; jet fuel nozzles

4) Coinage Metals

- a) Cu, Ag, Au
- b) copper, silver, gold

- 5) Chromium (Cr)
 - a) alloyed with Fe in steel
 - b) jet engine alloys
 - c) plating as corrosion retardant
 - d) used as a catalyst
 - e) green coloring in glass
- 6) Zinc (Zn)
 - a) uses of Zn: brass (Zn alloyed with copper); dry batteries; light coinage (US and Canadian pennies)
 - b) uses of ZnO— zinc oxide: paint and rubber manufacturing; cosmetics; plastics; flooring materials; drying body powder; soap
 - c) uses of ZnS—zinc sulfide: X-ray and TV screens, fluorescent lighting

VIII. Inner Transition Elements: Lanthanide and Actinide series

- A. also called inner transition metals or Rare Earth metals
- B. two "footnotes" at the bottom of the periodic table
- C. Cerium (Ce)
 - 1) uses for Ce: alloy "misch metal" for lighter flint; alloy with Mg for jet engines
 - 2) uses for Ce compounds: polishing glass; decolorizing glass; self-cleaning ovens
- D. **Neodymium (Nd)** used to decolorize or add color to glass
- E. Nd and Praseodymium (Pr) used to make welding mask glass
- F. Radioactive elements
 - a) Uranium (U-235), used in nuclear fission
 - b) Plutonium (Pu-239), used in nuclear reactor fuel
- G. Americium (Am-241) used in smoke detectors
- H. Californium (Cf-252) used in cancer radiation therapy

SUMMARY OF TRENDS

(remember, trends are generalizations)

INC = increases **DEC** = decreases

	TOP to BOTTOM	LEFT to RIGHT
ATOMIC SIZE	INC	DEC
IONIZATION ENERGY	DEC	INC
ELECTRO- NEGATIVITY	DEC	INC
ELECTRON AFFINITY	DEC	INC

IONIC SIZE cation (+) < neutral atom anion (-) > neutral atom