cas Law Problems

Use the 5 gas law to solve the following problems.

NOTE: All pressures in Ideal Gas Law problems are in kPa , so use the value $R=8.31 \mathrm{~L} * \mathrm{kPa} / \mathrm{K} * \mathrm{~mol}$

1. If I initially have a gas at a pressure of 12 atm, a volume of 23 liters, and a temperature of 200 K , and then I raise the pressure to 14 atm and increase the temperature to 300 K , what is the new volume of the gas?
2. A gas takes up a volume of 17 liters, has a pressure of 2.3 atm , and a temperature of 299 K . If I raise the temperature to 350 K and lower the pressure to 1.5 atm , what is the new volume of the gas?
3. A gas that has a volume of 28 liters, a temperature of $45^{\circ} \mathrm{C}$, and an unknown pressure has its volume increased to 34 liters and its temperature decreased to $35^{\circ} \mathrm{C}$. If I measure the pressure after the change to be 2.0 atm , what was the original pressure of the gas?
4. A gas has a temperature of $14^{\circ} \mathrm{C}$, and a volume of 4.5 liters. If the temperature is raised to $29{ }^{\circ} \mathrm{C}$ and the pressure is not changed, what is the new volume of the gas?
5. *The highest pressure ever produced in a laboratory setting was about $2.0 \times 10^{6} \mathrm{~atm}$. If we have a 1.0×10^{-5} liter sample of a gas at that pressure, then release the pressure until it is equal to 0.275 atm, what would the new volume of that gas be?
6. *Submarines need to be extremely strong to withstand the extremely high pressure of water pushing down on them. An experimental research submarine with a volume of 15,000 liters has an internal pressure of 1.2 atm . If the pressure of the ocean breaks the submarine forming a bubble with a pressure of 250 atm pushing on it, how big will that bubble be?
7. *Divers get "the bends" if they come up too fast because gas in their blood expands, forming bubbles in their blood. If a diver has 0.05 L of gas in his blood under a pressure of 250 atm , then rises instantaneously to a depth where his blood has a pressure of 50.0 atm , what will the volume of gas in his blood be? Do you think this will harm the diver?
8. If I have 17 liters of gas at a temperature of $67^{\circ} \mathrm{C}$ and a pressure of 88.89 atm , what will be the pressure of the gas if I raise the temperature to $94^{\circ} \mathrm{C}$ and decrease the volume to 12 liters?
9. I have an unknown volume of gas at a pressure of 0.5 atm and a temperature of 325 K . If I raise the pressure to 1.2 atm , decrease the temperature to 320 K , and measure the final volume to be 48 liters, what was the initial volume of the gas?
10. If I have 2.9 L of gas at a pressure of 5 atm and a temperature of $50^{\circ} \mathrm{C}$, what will be the temperature of the gas if I decrease the volume of the gas to 2.4 L and decrease the pressure to 3 atm?
11. I have an unknown volume of gas held at a temperature of 115 K in a container with a pressure of 60 atm. If by increasing the temperature to 225 K and decreasing the pressure to 30 atm causes the volume of the gas to be 29 liters, how many liters of gas did I start with?
12. The temperature inside my refrigerator is about $4^{\circ} \mathrm{Celsius}$. initially has a temperature of $22^{\circ} \mathrm{C}$ and a volume of 0.5 liters, what will be the volume of the balloon when it is fully cooled by my refrigerator?
13. A man heats a balloon in the oven. If the balloon initially has a volume of 0.4 liters and a temperature of $20^{\circ} \mathrm{C}$, what will the volume of the balloon be after he heats it to a temperature of $250^{\circ} \mathrm{C}$?
14. A soda bottle is flexible enough that the volume of the bottle can change even without opening it. If you have an empty soda bottle (volume of 2 L) at room temperature $\left(25^{\circ} \mathrm{C}\right)$, what will the new volume be if you put it in your freezer $\left(-4^{\circ} \mathrm{C}\right)$?
15. Some students believe that teachers are full of hot air. If I inhale 2.2 liters of gas at a temperature of $18^{\circ} \mathrm{C}$ and it heats to a temperature of $38^{\circ} \mathrm{C}$ in my lungs, what is the new volume of the gas?
16. How hot will a 2.3 L balloon have to get to expand to a volume of 400 L ? Assume that the initial temperature of the balloon is $25^{\circ} \mathrm{C}$.
17. If I have 4 moles of a gas at a pressure of 567 kPa and a volume of 12 liters, what is the temperature?
18. If I have an unknown quantity of gas at a pressure of 122 kPa , a volume of 31 liters, and a temperature of $87^{\circ} \mathrm{C}$, how many moles of gas do I have?
19. If I contain 3 moles of gas in a container with a volume of 60 liters and at a temperature of 400 K , what is the pressure inside the container?
20. If I have 7.7 moles of gas at a pressure of 9.1 kPa and at a temperature of $56^{\circ} \mathrm{C}$, what is the volume of the container that the gas is in?
